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PREFACM

Hathemtics is such a vast and rapidly expanding field of study that
there axe inevitably many immortant and fascinating aspects of the subject

which, though within tbe grasp of secondary sdhool students, do not find a

glaze in the curriculum simply because of a ladk of time.

Miany classes and individual students, however, may find time to pursue
mathematical topics of special interest to them. This series of pamphlets,

whose production is sponsored by the SChool Mathematics Study Group, is

designed to make material for such study readily accessible in classroom
quantity.

Some of the pamphlets deal with material found in the regular curric-
ulum but in a more extensive or intensive manner or from a novel point cf
view. Others deal with topics not usually found at all in the standard

curriculum. It is hoped that these pamphlets will find use in classrooms

.in at least two ways. Some of the pamphlets produced could be used to
extend the work done by a class with a regular textbook but others could
be used profitably when teachers want to experiment with a treatment of a

topic different from the treatment in the regular text of the class. In
all cases, the pamphlets are designed to promote the enjoyment of studying

mathematics.

Prepared under the supervision of the Panel on Supplementary Publications
of the School Mathematics Study Group:

Professor R. D. Anderson, Louisiana State University

Mr. M. Philbrick Hridgess, Roxbury Latin School, Westwood, Massachusetts

Professor Jean M. Calloway, Kalamazoo College, Kalamazoo, Michigan

Nr. Roriald J. Clark, St. Paul's School, Concord, New Hampshire

Professor Roy Dubisch, University of Washington, Seattle, Washington

Mr. Thomas J. Hill, Oklahoma City Public Schools, Oklahoma City, Okla.

Mr. Karl S. Kalman, Lincoln High School, Philadelphia, Pennsylvania

Professor Augusta L. Schurrer, Iowa State Teachers College, Cedar Falls

Mr. Henry W. Syer, Kent School, Kent, Connecticut
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CONNENTARY FOR TEACHERS

THE COMPLEX NUMBER SYSTE4

Introduction.

The c iplex number system is one of the supreme achievements
of the hull. n intellect. Compelling reasons for extending the real
number system are easy to find. In the context of the real number
system the theory of quadratic equations is most unsatisfactory,
for some quadratic equations with real coefficients have real
solutions, while others have no real solutionz. The desire to
remedy this situation is surely reasonable and modest. What is
remarkable is the fact that this modest aim, once attained, yields
a system SO rich that no further extensions are necessary to cap-
ture the roots of any algebraic equation of whatever degree. How-
ever, the solution of algebraic equations is onlY one of the
achievements of the complex number system. It is surely lamentable
that we are unable, at this level of the students' development, to
indicate the profusion of important and beautiful results to be
found in the theory of functions of a complex variable. We can
only state--with all the enthusiasm we can muster--that this field
of mathematics (and others closely related to it) is probably the
most intensively cultivated at the present time, and that its
applications in the sciences and engineering seem to grow daily.

The extension of the real number system to the complex number
system can be regarded as the solution of a problem--the problem

of constructing a number system with certain properties. The
solution of any problem generally proceeds in three stages (the
solution of an equation is typical): 1. statement of the prob-
lem; 2. identification of a possible solution, assuming that a
solution exists; 3. verification that the possible solution
actually is a solution. Accordingly, in Section 1 we state the

properties that the system is required to have; in Sections 20 3,
4 we identify the system by finding its elements and the rules for
operating with them, assuming that such a system exists; and in
Section 11 we verify that the system constructed with these ele-
ments and rules of operation has the required properties.

In t_e complex number system, classical algebra--the theory
of equations--finds its proper setting. The role of the complex
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number system in the theory of equations is discussed in Sections

5 and 8.

The connection between the complex number system and geometry

of great importance for geometry and analysis as well as for

algebra. This connection is introduced in Sections 6 and 7 and

further explored in Chapter 12 of SMSG Intermediate Mathematics.

1. Comments on the Introduction to Complex, Numbers.

In Section 1 we review the inadequacy of the real number

system with respect to the solution of quadratic equations and

announce our thtention to attempt a remedy by extending the real

number system. We state that we will find a system in which

every quadratic equation with real coefficients has a solution if

we seek one in which the equation x
2 + 1 = 0 has a solution.

This is so, of course, because every quadratic equation

ax
2 + bx + c 0

with negative discriminant can be transformed into the equivalent

equation

This is not discussed in the text until Section 5, but a brief

informal class discussion might be appropriate at this time.

The properties C-10 C-2, and 0-3 which we require our new

number system to posses are just explicit statements of the simple

and natural requirements that the system have all the algebraic

properties of the real number system, include the real number

system, a- :ontain a solution of the equation x
2 + 1 . 0. In

Section 2 we Impose a fourth requirement--also simple, but not

so natural.

It should be observed that in extensions of the number system

the extended system was required to have many of the order prop-

erties of the original system, but this is not done here. It is

not done because it cannot be done. If the complex 'number system

had the order properties of the real number system, the theorem

that the square of every number is non-negativa would have to hold,

but this contradicts i
2

-1.

2



Problems 1 and 4 of Exercises 2 man be assigned after
Section 1, if desired: Problem 1 reviews the reasons for pre-
vious extensions of the number system; Problem 4 is intended to

stimulate discussion of the fact, mentioned above, that the order
properties of a number system may not be preserved when the system
is extended.

2. 292pla Numbers.

In the preceding section we stated a problem which we tacitly
assumed had a unique solution. It does not--as we will see later.

An additional condition is needed to make the problem definite,
that is, to insure that it has a unique solution.

To expose this difficulty let us consider it in a more fam-
iliar setting. Suppose that our number system is the system of
rational numbers and that we wish to extend it to a system in
which the equation x

2
2 has a solution. Explicitly, we seek

a system which has Properties C-1 and Properties C-2 with the word
fl real" replaced by "rational" wherever it occurs; and which has
the third property--corresponding to C-3--that it contains a
number i/T, such that (/ff)2 - 2. Let us call these Properties
S-1, S-2, and 5-30 respectively.

We know that the system of real numbers has these properties,
but looking ahead, SO does the system of complex numbers. Our
problem does not have a unique solution; it has at least two solu-
tions, and possibly more.

It would seem foolish to extend the system of rational numbers
to the system of complex numbers just to achieve Properties S-1,
S-2 and 3-3; the system of complex numbers is too large--it con-

tains a number system (the real numbers). which already has all the
properties we require. Pursuing this objection, the system of

.real numbers might be larger than we require. It seems natural to
add to our conditions the requirement S-4 that the system be as
small as possible. With this condition added, our problem has a
unique solution S: The elements of S are those real numbers

which can be written in the form a + 197, where a and b are

rational numbers; and the operations in S are addition and mul-
tiplication of real numbers.

3



It is obvious that S has Properties 3-2 and 5-3. That it

has all the Properties S-I except (i), (iv) and (vii) follows

immediately from the fact that the system of real numbers has

these properties, and from 8-2.. It can be verified by calcula-

tionthat the sum, product, opposite and reciprocal of real num-

bers which can be expressed in the form a + 4/7, a and b

rational, can also be expressed in the form, so that S has

properties 5-1(i), (iv) and (vii). Thus, S is a solution of our

problem. Notice that in this argument the only statements whose

proofs were not immediate are those asserting that the sum, product,

additive inverse and multiplicative inverse of numbers in S are

in S.

It is easy to see that S is the smallest system which solves

our problem. Consider any other set of real numbers which, with

addition and multiplication of real numbers as operations, forms

a system S' which is a solution of the problem. Then S, con-

tains all rational numbers and Vff, and is closed with respect to

adiltion and multiplication. Hence, it must contain all real num-

bers which can be expressed in the form a I- V7, a and b

rational--that is, it must contain S.

We summarize the salient features of this discussion: The

properties we have required do not determine a unique number

system; The natural additional condition to impose to determine

a unique system is that the system be the smallest possible one

having the given properties; This additional condition is log-

ically equivalent to the condition that every number in the system

be expressible in a certain form; The essential part of the proof

of the equivalence of the two conditions is the proof that the sum,

product, additive and multiplicative inverses of numbers which can

be expressed in the stated form can also be expressed in that form.

The problem of extending the system of real numbers to the

system of complex numbers is entirely analogous to the problem we

have just discussed. Each of the summary statements we have just

made holds also for the extension from the real numbers to the

complex numbers.

We could have presented a discussion analogous to that given

here in the text. Such a discussion, however, would have been an

extensive and sophisticated preliminary to a program whose first

objective is the introduction of complex numbers and the rules for

calculating with them. Instead we have adopted a middle course.
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In Section 2 we add Property C-4 to our requirements insteaa
of the more natural condition that the system be the smallest
possible system having Properties C-1, 0-2, and C-3. The connec-
tion between these two conditions is suggested through brief dis-
cussion. However, in the discussion of addition, multiplication,
additive inverse and multiplicative inverse in Section 3, 4 and
5 we make no essential use of Propeity C-4; we use it only as a
guide. Thus, at the end of Section 5 one can look back and see
that Property C-4 is not necessary, but that to find a system
having Properties C-1, C-2, and C-3 it is sufficient to consider
the system with Property C-4. Better students should be encouraged
to do this, and all students should be aware of the need to check
at each stage the compatibility of Property C-4 vith the other
properties of the system.

We still have to present an example of a system larger than
the system of complex numbers which has Properties C-1, C-2, and
C-3. The simplest example is the following. Let H contain the
complex numbers, an element j which is not a complex number, and
all expressions of the form

aojn + a1 j
n-1

+ + a
n-1

j + a
n

b'0,1
m

+ b1jm-1 + + b
m-1 j + bm

where n and m are non-negative integers, aos al, ..., an and
b 0, b1, . ,/ b are any complex numbers, and a

o
/ 0, b / 0.

Thus, H is the set of all quotients of polynomials in j with
complex coefficients. Addition and multipliaation are defined
according to the usual rules for operating with polynomials. Then
H has the desired properties.

Problem 2 of Exercises 2 is intended to point out that in
previous extensions of the number system the system sought was
the smallest one having the desired properties. Problem *5 pro-
v'des an opportunity for the student to carry through for himself
the discussion presented above.



Exercises 2. Answers.

1. (a) The system of integers has an additive identity element,

and each integer has an additive inverse.

(b) In the rational number system each element except zero

has a multiplicative inverse.

(c) In the real number system every non-negative number has

two real even roots, and every negative number has one

real odd root.

(d) The complex number system contains an element i which

has the property i
2

- -1.

2. (a) System of integers.

(b) Rational number system.

(o) Rational number system.

3. (a) 1 + 01 (e) 3 + Oi

(b) + Oi (f) + 2i

(c) -1 + Oi (r) + 01

(d) o + (1)1

4. (a) The natural number system has the Well Order property.

Every subset has a least element.

(b) The real number system hab tn order relation. No order

relation has been defined for the complex number system.

5. If v47 were in S we could write

where a .and b are rational. If we square both sides

of this equation we get

3 - a
2

+ 2aloVf + 2b
2

or
2 2

- 2ba v4f
2ab

Since a and b are rational, the left side of the

last equation is rational, and the equation says that

4/7 is rational. Since we know this is false, the

assumption that 4,75 belongs to S must be false.

6 ii



(b) (a + VI) + (c + = (a + c) + (b + dVI, and if
a, b, c, d are rational, so are a + c and b + d,
since the rational numbers are closed with respect to
addition.

(a + 10)(c 4 o1/7) (ac + 2bd) + (bc + ad)/7, and if
a, b, c, d are rational, so are ac + 2bd and be + ad,
since the rational numbers are closed with respect to
addition and multiplication.

(c) The additive inverse of a + VI in the real number
system is -(a + VI). But

-(a + 10) = (-a) +

and if a and b are rational, so are -a and -b. .

The additive identity in S is 0 = 0 + q/7. If

a + VI is not zero, it has a multiplicative inverse
17 in the real number system. But772

a + (
-b

a2 ! 2b
2) (

a - 2b
n)

1

and if a and b are rational, so are 2 a 2 and
a - 2b

-b
since the rational number system is closed

a
2

- 2b
2

with respect to addition, multiplication, subtraction
and division.

(d) Property (i) of 0-1 was established in part (b) of this
problem.

Property (ii) is established by observing that addition
in S is addition of real numbers and addition of real

numbers is associative and commutative. To be more

explicit, addition is commutative since x+y=y+ x
if x and y are any real numbers, and hence, in

particular, if x = a + VI, y = c + Vff

Property (iii) is established by observing that
O . 0 + 40' is in SI and x + 0 = x for any real
number. Thus, in particular, if x = a +
x + 0 = x, and 0 is an additive identity in S.

O is the only additive identity in S since any other
additive identity c in S wouldbe areal number which

7
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satisfied x + c x for all x in S. But: taking

x 0, this becomes 0 + c 0 or c O. Property

(vii) is established in a similar way.

Since 0 is the additive identity in 50 an additive

inverse of a number a + 4/ff in S is a solution x

in S of the equation x + (a + 10) . O. There is one

and only one real number -(a + 10) which satisfies

this equation. We showed in part (c) that -(a + 11,M

is in S, and since this is the only real number which

satisfies the equation: it is the only number in S

which satisfies tta equation. This established property

(iv). Prvperty (vii) is established in a similar way.

(e) S has the stated properties. Let SI be another part

of the real number system with the stated properties,

and let a and b be any rational numbers. Then a,

b and IA' are in SI. Since SI is closed with

respect to addition, it contains a + 4/ff. Thus, every

number in S is in SI, and SI contains the system S.

3. Addition, Multiplication and Subtraction.

In this section we begin the discussion of operations with

complex numbers. It should be emphasized that our otailtEtire. is

to perform operations with eomplexnumbers in terms of operations

with real numbers. The discussion of addition and multiplication

is straightforward, but that of subtraction deserves some comment.

Subtraction is, as usual, defined as the inverse of addition.

We show that the equation

zl + z = z2

has at least one solution z = z2 + (-z). Notice, however, that

in order to define z2 - z, as the solution of this equation,

and to assert

z2 - = z2 +

it is essential to show that the equation has at most one solu-

tion--a ,unique, solution. The teacher may find it desirable to

present the proof of uniqueness to the class.

8



The additive inverse -z of z is defined by the equation

z + (-2) O.

According to Property C-4, -(a + bi) x + yi where x and y
are real. Substituting in the equation defining -(a + bi) we
obtain two real equations in x and y which have Ule solution
x -a and y = -b. We therefore conclude that

-(a + bi) -a + (-b)i.

Notice, however, that here we have been using Property C-4 only as
a guide. To prove the last equatton it is only necessary to
verify that

[a + bi] + [(-a)+(-b)11 - 0

and this is done without using C-4.

Exercises 3 provide practice in addition, multiplication and
subtraction of complex numbers.

Exercises 3. Answers.

1. (a) 4 + 9i

(b) 4 + Oi

(c) 3 + 71

(d) (4 + T) + vi

(e) (Ain + 1) + 5i

3. (a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(0 -1 + 7i

(g) 8 + (1)i

(h) 0 + 7i

(i) 15 +

(i) (3 +V7) + (9+./3)i.

5i Yes, any real number might have been added to
yi the answer given here.

5i

-13 + 261 (i) -18 + oi

24 + (-10)i (j) 14 + (-84)i

5 + 51 (k) 70 + 40i

-5 + 3i (1) -106 - 831
2 + 2/fi (m) 92 - 18i

(8 -)+ (84/7+4.) (n) (cx dy)+(cy + dx)i, if
-7 + 24i c, d, x, y are real numbers.

2 + Oi (o) (x2 - xy)+(xy y2), if x,
y are real numbers.

9
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M. (a) -3 + Oi (d) -2 + (-3)1

(b) 0 + (-1)i (e) -5 + 4i

(c) -1 + (-1)i (f) 4 + 31

(g) -a + bij if ajb are real numbers.

(h) -x + (-y)1, if xj y art real numbers.

5. (a) 5 + Si

(b) -2 + 21

(C) 0 + 101

(d) -1 + 01 (0 1 + (-3)1

(e)

6. (a)

(b)

(c)

(d)

(f)

(f) 1 + i

(g) 7 + (-7)i
(h) 0 + 6i

(1/7 - 2) + (1

i3 = 12 -(-1 )1. = 0 + (-1)i

i4 i2 i2 (-1)(-1) - 1 + 01

i9 = (12)4-i.- (-1)4i . 0 + (1)i

115 .

14n+1

i79 =

(12)71 =

(1 2
)

2n

(12)39-1

(-1)7i = 0 +

=
2 n

. (-1)39i . 0

=

+

0 + (1)1

7. General rule: The values of the powers of i recur in

cycles of 4.

To explain the general rule first note that

11 = 1,

12 = -1,
3

= i
2 .1 = (-1)1 = -1,

1
4

(i
2

)

2
= (-1)2 = 1.

Making use of the first four powers we have

(1)1 = ij

16 . .1.
2

= (1)(-1) = -1,

i
7 4

.i
3 (1)(-1) = -1,

i
8

= -1
4 (1)(1) = 1.

In general, if n and m are natural numbers such that

n = 4m, we have

i4m = = 1.

10 ;',



us,
4m+1 i4m.i . (1)i

4m+2 141%12 (1)(-1) -10

4m+3 i4m.i3

4m+4 14m.14 (1)(1) = 1.

These possibilities are all there are, for if n is a

natural number and we divide it by 40 the only non-negative
remainders less than 4 which we can get are Op 10 2, 3.

8. (a) 1 + (-1)i

(b) 0 + (-1)i

(c) 0 + 107i

(d) -7 + 84i

(e) -1 + (-1)i

9 /3
2

+ i)
2

3
113

-
+47i)
4

+ 2

(f) 11 + 20i

(g) 2abc + [-a3 b3 c3

(b + c)(c + a)(a +

(h) -1 + Oi

(i) -10 + 01

+ 2

2 + 0,/7 - 18 - 61/7 i
+

8

= -2 + 2 - 0

4. Standard Form of _Complex Numbers.

Section 4 is devoted to proving Theorem 4 and to defining

some important terms. Theorem 4 asserts that each complex number
z may be written in the form a + bi (a and b real) in only
one way. (C-4 asserts that z may be written in this form in at
least one way.) This theorem justifies the definite article in

the expression "the standard form" used to describe this.way of

writing complex numbers. (One advantage of Theorem 4 is that it

shows us we can have only one answer for exercises like those in

Section 3 where the student is asked to express certain complex

numbers in what we now call "standard form".) The double-barrelled

way in which Theorem 4 is stated gives the teacher an opportunity

to refresh the students' minds on the distinction between "if"

and "only if", a distinction which-cannot be over-emphasized.

However, the statement containing "only if" is the only part that
requires a proof.

11



Any tendency to regard Theorem 4 as obvious amn be overcome

by emphasizing that the requirement in the hypothesis that a, b,

c, d be real is essential; without this requirement the conclusion

is false. Example ka demonstrates this.

It is wurth observing that the proof of Theorem 4 can be based

on the following special case of the theorem: If a and b are

real, then a + bi = 0 + 01) if and only if a = 0 and

b O. Let us suppose this has been proved and show how the gen-

eral ease follows from it. Let a, b, c, d be real. Then

a + bi c + di

if and only if

(a - c) + (b d)i = 0.

The equation in the last line holds if and only if a - c = 0 and

b d O. This proves Theorem 4.

A word (or two) about the terms defined in Section 4 may be

in order. "Standard form" should cause no trouble; though one must

emphasize that the a and b appearing in the standard form are

real numbers. (Throughout the rest of the chapter we sometimes

say "a + bi, in standard form" and sometimes "a + bi, where a

and b are real numbers"; these expressions have identical mean-

ings.) "Real part" is straightforward and should cause no trouble.

Mathematicians have used the expression "Imaginary part" as defined

in the text for many years: The imaginary part of a complex number

is a real number. This terminology may be unfortunate, but it is

standard. Writers of many elementary books have departed from the

mathematicians' usage, saying that bi is the "imaginary part"

of a + bi. Students reading other books will notice that they

are not all in agreement. (This experience is a valuable part of

anyone's education.) A student who goes on in mathematics has to

learn sooner or later that in advanced work b is aalled the

imaginary part of a + bi. Since it seems a shame to teach him

something he must later unlearn, we stick to the mathematicians'

standard 1;erminology: The imaginary part of a complex number is

a real number.

Observe that 0 is both real and ars imaginary, but that

it is not imaginary. This may be momentarily disconcerting; but

it should be so only momentarily. One has only to remember that

everyday connotations and relations of words and phrases are irrel-

event to their technical use: A technical term means only what its

definition says it means.

12 '
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Problems 1-5 of rxercises 4 are practice problems. Problem 6
refers to the special case c = d = 0 of Theorem 4 discussed
above, and emphasizes again the necessity of the conditicn that
a and b be real. Problem 7 generalizes Theorem 4: Theorem 4

cl
is the special case obtained by setting z1 = 1, z2 = 1.

Exercises 4. Answers.

1. Real part Imaginary ar.1

(a) 0 2

(b) 0 0

(0) 0 1

(a) 5 -1

(e) 2x 3

(r) a -2

(g) 1

(h) -2 -217
(i) -3 1

(j) 2 0

(k) 0 3

(1) 1 2

- 3

0

5

-5.

There is only one

3. (a) x = 3, y = -6

(b) x y = 0

(c) x 0, y -4

(d) x I Y = -3
(e) x = y . 2

4. (a) 8 + 3i

(b) -2 + 01

(c) 6 + 12i

way in each case.

x-14, y = 2

x = 21 y 6

x 0, y = 0

x = +1, y 0

x 0, y -1.

4 + 8i

11 + (-16)i

10 + (-11)1
(g) 18 + 141

(h) (a2 + 2ab + b2 + c2) + Oi

(i) (x3
32)

+ (3x2y Y3)1.

13



5. Let z2 = (x + yi)2 = 8 + 6i.

Then (x2 - y2) + 2xyi 8 + 6i.

Since x and y are real, we must have

(i) x2 - y2 . 8,

(it) 2xy = 6.

Squaring both members of the last two equations, we obtain

(iii) x - 2x
2
y
2 + y

4
64,

(iv) 4x2y2 = 36.

Adding the last two equations, we get

(v) (x
2
+ y

2
)

2
= 100.

Since x
2 + y2 must be positive, it follows that

(vi) x2 + y2 = +10.

Adding (i) and (vi), we get

2x
2

. 18, 2y
2

= 2.

Hence,

x - +3 y +1.

From (ii) x and y have the same sign so
f- 3y = , and

fx
-

= -3
y= la

Note: In a sense the problem appears to be that of finding

the square root Of the complex number 8 + 61; however, we

have not defined the symbol V- for complex numbers.

6. Let a - x + yi and b = u + vi where x, yo u, v are

all real.

(a) If a . 0 and b 0, then a + bi and a - bi are

both.zero.

(b) Suppose a + bi = 0, then

x + yi + (u + vi)i = 0

or

(x - v) + (y + u)i = 0.

By Theorem 4, we have

x v = 0 and y + u - 0

or,

(1) x v ,and y -u



i.e., if a = v ui and b = u + vi, a + bi = 0 with
neither a nor b zero.

Since a - bi = 0 also, we have x + v + (y - u)i . 0, or

(2) x -v and y u.

Both (1) and (2) can be satisfied only if x = u = 0 and
y v = O. In this ease a = 0 and b O.

7 Let z = x + yi and z1 = xl + 1y1, yl / O.
Then

if and only if

z = a + bz
1

x = a + bx
1,

that is, if and only if

y = by1

yxl
b a = x

yl yl

5. Division.

The discussion of division in this section parallels that of
subtraction in Section 3. The comments made about subtraction
hold also, with obvious modifications, for division. Once again
it should be emphasized that our objective is to express calcula-
tions with complex numbers in terms of calculations with real
numbers.

The central problem of this section is to express the mul-
1tiplicative inverse if z = a + bi in terms of a and b.

1Since is defined by the equation

1
z = 1,

and since, by the Property C-41 1- x + yil x and y real,
the problem reduces to solving the equation

(x + yi)(a + bi) - 1

for real values of x and y. This equation can be transformed
into the equation

(ax - by) + (bx + ay)i = 1.

Now, if x and y are real, then the expressions in parentheses
are real; here we are using Property C-2. Hence, by the theorem

15
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on standard form, the equation above is satisfied if and only if

arid

ax - by 1,

bx + ay - 0.

The problem has thus been reduced to that of solving a pair of

linear equations with real coefficients for the real unknowns x

and y. The solution of this system proceeds in the familiar way,

and we conclude

1 a -b

a + bi a2 + b2 a2 + b2

To find this result we used Property C-4. However, to

establish the result we have only to verify that

a -b

2 2 + 2- 2 (41 bi) 1'
(a + b a + b

and this verification makes no use of Property C-4.

Now looking back over the discussion in Sections 3, 4 and 5

we see that, as promised in Section 2, we have proved that the

sum, product, and additive and multiplicative inverses of numbers

given in the form a + bi can again be expressed in this form.

Thus, if we had required that the system we sought be the smallest

possible system having Properties C-1, C-2, and C-3, we could have

established Property C-4 as a theorem.

Of equal importance is the fact that we have achieved our

objective of expressing all operations with complex numbers in

terms of operations with real numbers.

Exercises 5 either provide practice in operations with com-

plex fractions, or require the proof of statements made in the

text without proof.

Exercises 5. Answers.'

1. (a) 1 + Oi

(b) +oi

(c) 0 + (-1)1

(d) 0 + (1)1

(e) + (4)i

(r) 3.23 ( Ti
(g) None

4 3
(h)

2. Zero does not have a multiplicative inverse.

1 6 9
4.d ,



3. 1, -1

4. i, -1

5. (a) +
(b) 0 +

23 ( 14
(f) + -

3 46
(g)

(h) + 3..64 i

(i) -R.* (-0i
(i) +

(k)

(1\
'

(m)

(n)

+1a-i-11

2ab 4a
2

- b
2

a2 + b2

2a2 2b2

a2 + b2

2
+ b2

m2 n2 2mn 4

m2 2+ n

3x2 2

2
X 4- y x + y

6. Let z3 and z4 be two solutions of the equation zlz = z2,
so that

ziz3 z2, and z1z4 = z2.

Multiply both members of each of the last two equations by
Thenz1

=
%-z ` 1

z 1 =
31 ' '1

jz
3

l.z
3
= z

3'1

7J-z2 = 14kz,' z4) = (7'2.7-z, )z4 1.z4 = z4.

Therefore, z3 z4.

17



Alternate solution for 6:

Suppose u and z are solutions of the equation. Then

z u
1

z2

zlz z2

and z
1
(u - z) = 0.

By (5f) this can happen only if one of the factors is zero.

z Op ...11 * 0 or u = z.
1

7. Let z a + bi. (Note that a2 + b2 0.)

1 a
Then

z a2 + b2 a2 + b2

1 a 1
Thus, the real part of 7 = =

a2 b2

2a = a
2
+ b

2
.

(a) If b 0, then a = 2 (since a and b cannot both

be zero); and z = a + bi 2 + Oi.

(b) If b = then 2a - a2 +

and

or,

4a2 noa + 1 = 0;

a = 1 +14

a -

So there are two possible numbers z:

(c) If b = 1, then 2a . a2 + 1,

a
2 - 2a + 1 = 0

1ri.

a = 1.

Hence, z=l+i.

8. The "if" part of the proof follows immediately from the fact

that 0.z = 0. To prove the "only if" part of the statement

suppose that z/z2 0. If z, 0, then C contains a
1 I 1

number . Multiplying by -----, we get z 0 - 0.
z 1

z
1

z
1

18 r) r.%
;



Thus, if z1z2 = 0, and zi / 0, we have z2 = 0.
Similarly, if z1z2 m 0 and z2 / 0, then we have 21 = 0
Therefore, 2122 m 0 implies that either 21 = 0 or
z
2 m 0, or possibly both (since 0.0

z,
9. Let wo be the unique solution of z2w m 21; then wo =

2
and 22w0 m 2/. Similarly, let wi be the unique solution

23
of 24w - 23; then wi = = and 2011 m 23. Also, let w2

'4 z123
be the unique solution of (2224)w = z1z3; then

w2
2

We must show that wowl w
2'

From z
2
w
o

-
1

and

2041 = z3 we get (z2u0)(z4w1) 2123 or (z2z4)(wowl) =2123.

Thus, won. satisfies (z224)w = z1z3. But w2 is the only

solution of this equation. Hence, wowl = w2.

1
z
310. Let w and w = -- and let w

3
be the uniqueo 2

2
1 z '

solution of (z224)w = z1z4 + z223. To show wo + w/ = w3.

From z2w0 . 21 and z4z1 z3 we get 24(22z0) = z1z4

and 22(24141) = z223; so, adding, z2z4(w0+w1)=z124+2223.

Thus, wo + wi satisfies the equation whose only root is w3.

Hence, wo + wl = w3.

6
11. (a) + 01

5

(b) -375 + g)i

(e)

(c) 8 + Oi

(a) + 01

- 12a2b 2 + 2b + 012 f.2
ka + b )

*12. Whether or not a and b are real numbers, provided that
aa

2
+ b

2
0, we can multiply the factors a + bi, -bi5-75

a' + b"
a
2

b
2

and get (a + bi) + ab ab

a2 + b2
i

a
2
+ b a

2
+ b2

(for there is nothing in the proof of Theorem 3b which
a -birequires a and b to be real). Thus, is an

a + b
2

inverse of a + bi, if a
2
+ b

2
/ 0. But we know already

that no complex number can have more than one inverse, for
if it did, Property C-1(vii) (as stated in the text) would

be false.
19



6. Quadratic Equations.

Section 6 extends the theory of quadratic equations with real

coefficients by treating the ease of a negative discriminant.
.12

Since the quadratic formula involves the expression vo 4ac

and we are interested in the case b
2

- kac < 0, we are obliged

to precede our discussion of the formula by a definition of 4/17

for r real and negative. Hence, we begin with the examples

z
2

E -1 and z
2

= r, r < 0, and lead up to the extended defi-

nition of 07 (Definition 6). With the definition of i/F avail-

able, we summarize our results on the special quadratics (those

having no first degree term) in Theorem 6a, a result we need in

the proof of Theorem 6b. Theorem 6b is proved by the usual process

of completing the square, and then using Theorem 6a to solve

b 2 b2
(z + Ter)

4a

Since v4477 = 21a1, the square roots of the right member are

v477 7-1

-
One of these is the other is (which

a 2a
is which depends on whether a > 0 or a < 0). Theorem 6b solves

the problem of finding the solutions of the general quadratic

equation with real coefficients. We find that every quadratic

with real coefficients is one of three types: (1) It has one

root--which is real--if its discriminant is zero; (2) It has

two (different). real roots if its discriminant is positive;

(3) It has two (different) non-real complex roots if its discrim-

inant is negative.

Exercises 6, Problems 3 provide practice in calculating with

the square root symbol. It should be emphasized that when a

variable appears in the radicand, it is in general necessary to

distinguish several cases. One reason for this is that the state-

ment A7r7g =07 which holds for r > 0, s > 0 is not true in

general. Problem 5 requires a proof of the extension of this

statement to the case in which r and s are not both negative;

Problem 4 is intended to show why the statement is not true when

r and s are botn negative.

20
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Problems 6-17 provide practice in the solution of quadratic
equations. Problem 16 deserves particular comment. Although we
have established the "quadratic formula" only for the case of
real coefficients, it continues to hold when the coefficients are
complex provided ,the discriminant is real; in this ease the formula

can be established exactly as it was for the case of real coeffi-
cients. Thus, the quadratic equation

2
1-110Z +0(11, 0

with complex coefficientstg 0( aan be solved by means of the
quadratic formula if

where r is a real number. We can construct quadratic equations
for which this is true by choosing the complex number, and the
real number r arbitrarily, and determining ( from

002
r0C

The equation of Problem 16 is determined by choosing A7 -10

r = -9. Quadratic equations with complex coefficients without
the restriction that the discriminant be real are considered in
Chapter 12 of SMSG Intermediate Mathematics.

Problems 18-24 provide an opportunity for the student to

investigate by himself questions which will be discussed in detail
in Section 9. We mention in particular Problems 19 and 20, which
state important results of algebra; these will be stated more
generally in Section 9. The approach suggested in the hint for
Problem 22 could be used for the solution of quadratic equations
with complex coefficients in general, but the method is too cum-
bersome to be useful. Some students might be interested in

pursuing this point, however,

Exercises 6. Answers.

1. (a) 0 7i (e) 0 + (-10)i

(b) 0 + (-14/5) (f) 0 +11Fi

(c) 0 + (g) Oi

(d) + 01 (h) 01

21



2. (a) 0 + 2i

(b) 2 + Oi

(c) 0 + 21

(d) IcI + Oi

3. .(a) 0 + (a + b)i

(b) + Oi

(c) -(a + %far) + Oi

(d) oi

(e) Icl + Oi

(f) 0 + Icli

(g) 0 + Icli

(e) '0 +

(f) -a2 + Oi

(g) 0 + 2(a + b)i

4. Proof that %Am =,/vs if a and b are non-negative

real numbers: By the definition of the square root of a

non-negative number we know that

r^
(s/a)

2
= a,

Thus,

6.2
- b.

= ab,

and we know that (AVE) is a square root of ab. Since

Vir and 07 are both non-negative by definition, it follows

that (livS) is non-negative. Hence, (/VE) must be the

square root of ab; that is,

N/03 =i/VF

Now, if a and b are negative, then

v4Y = 14/7E;

and LAVT) = (4/77.)(14/77) =

Again (11.-,4F
)2 )2

(m/F
)2

ab

but as we have just seen

44r.4/13 = lATE, a negative number which cannot be

the square root of ab.

5. r < 0 and s > 0, then AA' 4/7.7VF

also, VS% = it/(-r)(s) =

6. 0 + 1, 0 + (-1)i

7. + 4/5 + +
2

8. -1 + (1)i, -1 + (-1)1

22



9. +

110.
1
+ 7 + (_¼±)

11. -2 + 2 -2 + (-2)1

12. 2 + 21, 2 + (-2)1

13. + 4i 4 + (-4)i
14. If a 14 (2 + 2./1 + 2a) + 0i, (2 - + 2a) + 01.

1.If a <-, 7 2 + V-(1 + 2a)i, 2 + (-24/-(1 + 2a)114.4.ii
16. 0 + 21, 0 + (-1)i

17. If > 0: 0 + 4i, 0 +

If < 0: 41-al 4 01, -4/1 + 01

18. z
3

- 8 = (z - 2)(z
2

+ 2z + 4)

z
3

- 8 = 0 if and only if z - 2 = 0 or z
2 + 2z + 4 = 0.

The solutions are 2, -1 +8751,, -1 +

19. Using-Theorem 6b we obtain the following solutions for the
given equation:

Thus,

z
1

-b - 4ac
2a

4acz
2 2a

2a

2a

4ac c

7477 7:

4ac -b

4ac)

- 4ac -b b b
2a

(-b -442 - 4ac) b2 Cb2 - 4ac)
2a

4a
2

23



20. az2 + bz + c a(z2 +

By making use of the results of Problem 19, the right side

aan be written as

a(z
2

- (z
1

+ z
2
)z + z

1
z
2
).

Hence,

az
2 + bz + c = a(z z1)(z z2),

or alternatively, multiplying out the right side of the

last equation, the left may be obtained directly.

21. (a) z2 - 2z + 2 = 0

(b) z2 (2 + 21)z - 1 + 2i = 0

(c) z2 . 0

(d) z2-4(a1+a2)+(b1+b2)i]z+((ala2-blb2)+(alb2+a2b1)i3 =0

*22. Let z = x + yi, where x and y are real.

Then z
2

= x
2 y2 + 2xyi.

But z2=i. so

(i) x2 - y2 00

(ii) 2xy - 1.

Squaring both sides of (i) and (ii) and adding, we have

(iii) (x
2
+ y

2
)
2

1.

Since x
2
+ y

2
> 0, taking square roots of both members of

(iii) we have

(iv) x2 + y2 . 1.

Adding (i) and (8v) we obtain

2x
2

1.

From whence

From (ii) the corresponding values of y are

(Note that from (ii) x and
Y y have the same sign.)

Therefore, z i, +



23. Employing the method displayed in the solution of Problem *22
we obtain

.4 + _4 +4 1.

*24. Extending the idea of Problem 20, we have

(z - (1 + 2i)1(z - (1 - i)3(z - (1 + i)] = 0,

or, multiplying out the left member, we obtain

z3 (3 + 2i)z2 + (4 + 4i)z - (2 + 41) . 0.

There is no quadratic equation having all three solutions,
for the formula in Problem 20 shows that no quadratic equa-
tion may have more than two solutions: If az

2
+ bz + c =

a(z z1)(z z2) = 0, a / 0, then either z - zi = 0 or
z - z

2
= 0; i.e., z = z

1
or z = z

2
. Moreover, no quadratic

expression such as az
2
+ bz + c can be written as a product

of three first degree factors, say (z - z1)(z - zo)(z - z3),
times a constant: For any such product produces a z

3
terms

and no quadratic can have such a term.

Graphical Representation--Absolute Value.

The representation of complex numbers by points in the plane
had a great effect historically on the acceptance of the complex
number system by mathematicians. This geometric representation
overcame the feeling that the complex number system was not con-
crete; the employment of the complex number system in the solution
of geometric problems, which it permitted, promoted an appreciation
of the usefulness of the system. The discussion in Section 7, and
its continuation in Section 8, may be expected to have a similar
effect upon students.

The discussion in the text calls for little comment. We
mention only that the notion of absolute value is a purely alge-
braic one, even though its definition is geometrically motivated;
all of the properties of absolute value can be established alge-
braically. In particular, the relations iziz21 = lz111z21,
Izi + z2I lz11 + lz21 aan be established algebraically. It is
remarkable that although the geometric interpretation of the first
relation is obscure and that of the second very clear, the

25



algebraic proof is not presented in the text. The interested

teacher can find such a proof in almost any text on the theory of

functions of a complex variable. (See, for example, R.V. Churchill,

Introduction to Complex, Variables and Applications.)

Exercises 7, Problems 1-4 provide practice in the graphical

representation of complex numbers and the graphical interpretation

of addition and subtraction. Problems 5-7 involve the calculation

of absolute values. Problems 8-10 require the proof of statements

made in the text without proof. Problems 11-12 refer to the

geometric interpretation of operations with complex numbers in

special cases.

Exercises 7. Answers.

1.

2.

1111111111131111111111

uaaaaaasaaaauaaaaa
M11111111111111111111111

111111110111111E2111111111

MI11111111/11111.11

01111111111111
11111MUMIRON
111111111.1111111

2t)



3. (a)

(b)

MOOMMUMMEN
MIMI MEM=
MINOMM MEMO
MMEMMEMUMM
Norm awns
mmonammomm
milcummilimmmum mom=mom Immomum Moms

EMMEN DEMME
MEMMEMMOMM
mama mamma
mummaNMEME
MOMSN MIME
MINIMENNEME=MEM MO=

INIMME mama
muss MOM=
NM ANNUM=
MAME WEIMM
MOM EMMEN
MEENOUMMOM
MIMEO ARUM
MEMMWMEMME
INEVOMMINIM
MEOW MEMO

27

*

z1 + z2 3 + 21

z 1 - z2 -1 + 0 I

1 + z2 = 5 + 51
z1 z

2 1 - i

z + z
2 = I +

- z2 = 3 + 31

Zi z2 -4 +
z

1
- z

2 = -2 + 71



3. (e)

(r)

(g)

1110022111M111
Erwilizimmum
MarallunlIMER
MINITIMI IMRE
EVAINEWIMIUMME

11012.1AMIIMER

1111111111M1111111M
11101111MIE171111M

111111111111111111MIN
11111110.1111101111M

11111111WIIIIME
111111111111111ARIMINIRURULRRS

UUUUUIRkUUk
IMIIREMMOMMO
MINE1111111111111111.

28 3

z1 + z2 -2 + 5i
z1 z2 -4 - 31

z1 + z2 = 2 - 6i
z1 z 2 = -2 + 2i

z1 + z
2

51

z 1 - z2 = 6 - 51



( h)

z,

z2 "4- z54.
2 2

z3 + z6 (-4 - 21) (_1)i
2-

z4 + z7
- ii

2

5. (a) 5

(b) 2

(c) 0

(-1)i

z
1
+ z

2
= 4 - 4i

4 + 4i

(d)

(e) V1717:72-

6. Let z x + yi

then * ,
ii/x2 72

x
2 _72_7

= 1.and
x +y2 Y x + y

7. (a) The single point (1,0).

(b) Let z = x + yi, x and y real.

Then x + yi =44;4727-7.

Hence, y = 0, and x =07
Therefore, the set of points is the non-negative x-axis.

(c) Since z aannot be zero, the given equation may be
transformed into the equation Izi . 1, and this is
the equation of the unit circle.

29



Let zi + yli and

Then 1z1z21 (xi + y1i)(x2 + y2i)I

y151.2) + (x1y2 + x2y )

.12 2 2 2 2 2 2 2
xix2 - 2x1x2y1y2 + yiy2+ xiy2+ 2x1y2x2y1+ x2yi

xi(1417.7-2 4-W-2--c24- y2)

2 2 2 2
xl yi x2 + y2

= Iz11.1z21 .

9. Let z1 = c1 + yli and z2 . x2 + y2i.

z, (x1 + y11)(x2 - y2i) (x1x2+y1y2)+(x2y1-x1y2)i

Then -2 2 2 2

Ar2x2,_0, _y +y2y2+x 2

and
- 2x

1
x
2
y
1
y
2
+x2+y

2 2

2
zli V 4'1 2'1 2 I 2 1 2 2 1 1 2

17--

2 x2 + y2

21 ,21x2
Y2/ J1 2

2 2
x2 + y2

vlq + Y!)(4 +

2 2
x2 + y2

fzli
IZ21

10. Using the fact that the sum of the lengths of two sides of a

triangle is greater than or equal to the length of the third

side, we have

Izi - z2I + Iz2I Iz11 and Iz1 - z21+1z1I > Iz21

or
Iz/ z2I > 1z11 - Iz21 and Iz1 - z21 I 21 - Iz11.

30



From this we conclude

Izi z2I k lizil
1z211.

11. If Os ti = a + bi and 22 = c + di are collinear, then
the slope of the segment joining 0 and z1 is the same
as the slope of the segment joining 0 and z2. Thus,

If z3 = zi + 22,

then z3 = (a + c) + (b + d)i.

The slope of the segment joining 0 and z
3

is

b + d(ii) 877-6
But (ii) is equal to both members of (i); that is,

b d b a b+d a+c b+dd
d c a C

Hence, the slope of the segment joining 0 and z3 is the
same as the slopes of the segments joining 0 and the points
z
1

and 22 respectively, and since all three segments pass
through 0, the points 0, zl, z2 and z3 are collinear.

12. The triangle with vertices 0,

1, z is shown in the figure at

the right. The lengths of the

sides of the triangle are 1,

1z1, 1z - 11.

If we multiply each of

these lengths by 1z1, we 'ob-

tain 1z1.1, kHz],
kHz - 11 = lz 2 - z1. These

are the lengths of the sides

of a triangle whose vertices

are 0, z, z2 as the second

figure clearly shows.

The two triangles are similar

because corresponding sides are

proportional.

To obtain a geometric con-

struction for z
2

, one must

choose a unit of length on the x-axis, draw a triangle with
vertices Op lp z, and then construct a second triangle
similar to the first one by making each side of the second

/z/
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triangle IzI times as long as the sides of the first. The

vertex of the second triangle which corresponds to z of the

first triangle is z
2

8. Complex Conjugate.

The introduction of the notion of complex conjugates has

several important consequences. It makes possible: the simplifi-

cation of computations involving absolute values and multiplicative

inverses; the algebraic representation of the geometric operation

of reflection in a line; the algebraic formulation and manipulation

of statements involving the real and imaginary parts of complex

numbers; and the algebraic representation of all geometric rela-

tions in terms of complex numbers.

In connection with the last of these features it should be

observed that only geometric conditions which are satisfied by a

flnite number of points can be expressed in terms of the complex

variable z alone, since an equation in z has only a finite

number of solutions. The solution set of an equation in z alone

is, in general, a finite set of points; the solution set of an

equation in z and ; is, in general, a curve.

The examples and exercises of Section 8 illustrate the state-

ments made above. In particular, Problems 2, 9 and 11 are con-

cerned with computations involving absolute value and multiplica-

tive inverse; Problems 6 and 14 are concerned with reflection in

lines; Problems 7, 8 and 10 are concerned with the algebraic form-

ulation of statements about the real and imaginary parts of complex

numbers; and Problems 3, 4, 12, 13, and 15 are concerned with the

complex algebraic formulation of geometric conditions. Problem 1

provides practice in computing conjugates, and Problem 5 requires

the proof of statements made in the text without proof.

Exercises 8. Answers.

(f)

(g)

(h)

(i)

1 + (1)1

0 + vi

3 + Oi

-4/7 + 3i

1. (a)

(b)

(c)

(d)

(e)

2 + (-3)i

-3 + (-2)1

1 + (1)1

-5 + 01

0 + 21
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2. (a) + (4)i

(b) + T351

(c) (.4)i
(d) + gi

(e) gi

(r) +

(g) -4+ (-)i
(h) -3 + (41

3. (a)

4. (a)

4a + 9b2
2 2(2x - y )

4x2 + y2

-127 +

(p) + oi

(b)

(b)

f -ab N4

'4a2 + 9b2

f 3XY \i

42 y2x +

(c) There is no complex number z which satisfies the
given equation. Hence, the set is empty.
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5. (a) zi + 22 . (x1 + x2) + (y, +

(xl x2) (Y1 "4" 572)i

(xl Yli) (x2 Y21)
(x/ yii) + (x2 - y2i)

m 72.

(b) 11z2 (x1x2 yiy2) + (x1y2 + x2y1)i

= (x1x2 - yly2) (x1y2 + x2y1)i

But the expression in the right member is equal to the

following:

Hence,

(x1 - y1i)(x2 y2i)

(x1x2 - y112) -(x1x2 + x2y1)

21.,z2 . 21-22

(c) 77E7 . (-x2 - 12i) = -x2 + y21 ;

-(2p - -(7c7-7-2-1) . -(x2 - y21).. -x2 + y i ;

Hence, "z---a-p-

Since 21 + z2 21 + z2, we can now write

zi z2 = z1 + ( -z2) -z-: + 1-77 = zi - z2.

-T- -77-777 x2 + y2i

(d) z
2

' 2 2 2 ;4 + y
2x2 +I

2

1 1
X
2
+ y

2
i

;

z
2

2 2 x2 +

-7-- I
hence, --- '=22

7'2

Since
I
.2 = we can now write

2'

zi z
1

. 2 21.7= -or-
2 z

2
2
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6. The reflection of any point w in the y-axis is -7.

Hence, the refIion of z3 - (3 + 2i)z2 + 5iz - 7 is
---Pe4.771:7473.-[(z4) - (3 + 2i)(za)+ 7-(7)-in

- (3 - 21)(Y)2 5i(7) - 7]

3 /

= -z + - 2i)z + 51z + 7.

2 27. If z
2

z
2

then 0 = z - z (z + Z.)(z - fl, so either
z + z = 0 or z - = 0. In the first case z is pure
imaginary, in the second case z is real.

8. A number w is pure imaginary if and only if w -7. Thus,
z

2 is pure imaginary if and only if

Z,Z = Z
1. 2 1 2

ziz2 = -z1z2 .

Dividing this last equation by z2z2 we obtain

and

z
1

z
2 z

2

z
a.

z
1which holds if end only if 7, is pure imaginary.

9. Izi z212 = (z1 - z2)(z1 - z2) (z1 - z2)(71" z2)

= z + z z 7z z1 1 2 2 1 2 1 2

= 1z112 + 1z212 cz2 z117.

1z1 + z212 = (z1 + z2;(z1 + z2) = (z/ + z2)(77 +

= z1z1 + +z2z2 z1z2 + z1z2

= lz 12 + 1z
2
12 + + z z1 1 2 1 2'

Thus, lz1
2 z212 21z,12 21z212.
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10. Let zl = xl + yli and let z
2

= x
2
+ y

2
1..

z, + z2 is real if yl + 7, = 0, and

z1z2 is real if x1y2 + x2y1 = 0.

But if yi + y2 - 0, then either y/ = y2 = 0, or y2 /0

and yl = -y2. In the first case z1 and z2 are both

real, and in the second case we have x1(y2) + x2(-y2) =

or xl = x2. So in the second case =

11. It is sufficient to show that

2

z,

But t
z21

z 1
z
2

72") ==27)(2)
1z1

-26
12. If y = 3x + 2 then since x = 7(2. + z), y - z)

we have

1
7(z - z) = 3 .f(z + z) + 2,

or simplifying

(-3 + + (-3 - i)z - 4,

which may also be written

(-3 + + (-3 + i)z - 4.

13. Let z x + yi and K - A + Bi where x, y and A,B

are real. Substituting in

+ = C

we get

(A + Bi)(x + yi) + (A + Bi)(x + yi) C

(A + Bi)(x yi) + (A - Bi)(x + yi) = C

[(Ax + By) + (Ex - AY)il [(Ax + By) + (-Bx + Ay)i) C

2(Ax + By) = C.

If B / 0, then
C - 2Ax

y 77---

which is the equation of a straight line. If B = 0, then
C

which is the equation of a straight line parallel to the y-axis.
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14. The points z1 = xi + iyi and z2 = x2 + iy2 are symmetric
with respect to the line y = x if and only if y = x is
the perpendicular bisector of the segment joining zi and
z2. This is equivalent to two conditions: the midpoint of
the segment joining z1 arid z2 is on the line y = x;
the segment joining z1 and z2 is perpendicular to the
line y = x. The first of these conditions is algebraically

X1 + X2 yl + y2

3

the second condition is

Yl
-1.x2 - xi

Thus, for symmetry with respect to y = x the following
pair of equations must be satisfied:

xi + x2 yi + y2

Y2 YI xl x2'

Multiplying the second equation by i and adding the result
to the first we obtain

xi + x2 + i(y2 yi) = yi + y2 + i(x1 - x2)

(xi - iyi) + (x4 + 1y2) (ixi + y1) - (1x2 - y2)

(xi iyi) + (x2 + 1y2) i(x1 - 1y1) - i(x2 -1y2)

zi + z2 íç - 1z
2

(1 - i)zi + (1 + i)z2 = 0

which was to be proved.

15. Let zi = xi + yii, z2 . x2 + y2i. (We assume zi / 0,
z
2

/ 0 since otherwise the problem has no geometric meaning.)
Then

(xi + y11)C7477771-) = (xi + y1i)(x2 y2i)

(x1x2 + y1y2) + (yix2 - x1y2)i,

so that if z
1
z
2

is real

Y1Y2 x1x2 0'

If xl . 0 then since yi / 0 it follows from this equation
that x2 . 0, so that both zi and z2 are on the y-axis
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and the segments joining them to the origin are parallel.

The same conclusion is obtained in the same way if x2 - 0.

In the general case x1 / 0 and x2 / 0 so that we may

divide our last equation by x1x2 to obtain

Yl

1

Y1 Y2.
xl x2

Thus, the slopes of the segments joining z1 and z2 to

the origin are equal and the segments are parallel. In every

ease therefore if z is real, the segments z
1

and z
21 2

to the origin are parallel.

9. Polynomial EquationS.

In this section we discuss the ultimate significance of the

system of complex numbers for algebra. We state without proof

the Fundamental Theorem of Algebra, and consider simple examples

in which it applies.

Properly speaking, the Fundamental Theorem of Algebra states

that every polynomial equation of positive degree with complex

coefficients has at least one complex solution. The theorem we

have stated as the Fundamental Theorem is obtained by combining

the preceding statement with the Factor Theorem which asserts that

if r is a solution of the polynomial equation P(z) - 0, then

z - r is a factor of P(z). According to the Fundamental Theorem

if P(z) is a polynomial of degree n > 0 then the equation

P(z) - 0 has a complex solution r1. By the Factor Theorem then,

P(z) = (z - r
1
)P

1
(z) where P

1
(z) is a polynomial of degree

n 1. If n - 1 > 0, then applying the same argument to P/(z)

we conclude that P
1
(z) , (z - r

2
)P

2
.(z) or P(z).(z-r

1
)(z-r

2
)P

2
(z)

Continuir,g in this way we obtain the theorem stated in the text.

The teacher may wish to present the preceding discussion and

a proof of the Factor Theorem to the class. The following simple

proof of the Factor TheOrem is based on the factoring identity

zk rk = (z - r)(z
k-1 + z

k-2
r z

k-3
r
2

+ + r
k-1

)
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Let

P(z) = a zn + alz
n-1

+ + a
n-1 z + an0

be a polynomial and let r be a solution of P(z) . 0; that is,
P(r) .= 0. Then,A

P(z) = P(z) - P(r)

. (a zn+a
1
z
n-1

+...+a
n-1z+a ) (a

o
r
n
+a

1
r
n-1

r
n-1. a

o
(z ) + + a

-1
(z - r)

n
rn) + a (zn-1

1 n

. a
o
(z-r)(zn-1+zn-2r+...+r

n-1
) + a

1
(z-r)(z

n-2
+zn-3r+...+r

n-2
)

+ + a
n-1

(z - r)

n-1. , n-2 n-3 n-2.= (z-r)[a (zn-1 n-2+z r+...+r )+a
n
(z +z r+...+r )

+ + a
n-1

= (z - r)Q(z).

Exercises 2. Answers.

1. (a) 1, multiplicity 1

- 2, multiplicity 3

(b) 0, multiplicity r
1

- 71 multiplicity 2

3, multiplicity 1

3 - 210 multiplicity 2

-1, multiplicity 5

2. (a) Since z
5

+ z + 3z
3

z
3
Cz -

we have the following zeros:

0, multiplicity 3

multiplicity I

multiplicity 1

(b ) Since z
4
+ 2z 2 + 1 = (z + i) 2, .(z - i) 2, we have the

.

following zeros:

-1, multiplicity 2

I, multiplicity 2

Since z
3

+ 3z
2
+ 3z + 1 = z + 1) 3

, we have
-1, multiplicity 3
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3. (a) Example 1: - 1)(z - 2) . O.

Example 2: a(z - 1)(z - 2) . 00 where a is real,

non-zero, and not equal to 1.

(b) Example 1: (z - 1)(z - 2) . O. This equation is of

degree 2 and each zero is of multiplicity 1.

Example 2: (z - 1)(z - 2)2 O. This equation is of

degree 3 and has zeros which are of multiplicity 1 and

2, respectively.

4. An equation of degree 4 aan have either aims two, three,

or four solutions. The number which it has depends on the. -
multiplicity of the zeros of the polynomial associated with

the equation. The following examples are illustrative.

One solution: (z - 1)4 . O.

The polynomial (z - 1)4 has the zero 1 of multiplicity

four. Hence, the solution of the equation is the single

value z = 1.

Two solutions: (z - 1)(z - 2)3 O.

The zeros of the polynomial (z - 1)(z - 2)3 are J.

(multiplicity one) and 2 (multiplicity three). The

solutions of the equation are z = 1,2. Another example
.

is kz
2

+ 1)
2

. Note that here we have two pairs of con-

jugate complex numbers.

Three solutions: (z - 1)(z - 2)(z - 3)2 = O.

The zeros of the polynomial are 1 (multiplicity one),

2 (multiplicity one), and 3 (multiplicity two). The

solutions of the equation are z = 102,3.

Four solutions: (z - 1)(z - 2)(z - 3)(z - 4) . 0.

The zeros of the polynomial are 1,2,324; each is of

multiplicity one. The solutions of the equation are

= 1,2,3,4.

5. z
3
+ 1 = (z + 1)(z

2
- z + 1) = 0. Hence, z -1 is one

solution. To obtain the remaining solution, put

z
2

- z + 1 = O.

Then 1 + v.17i

ko



The solutions of the given equation are

-1, l+kipsi 1 _el

6. (a) Since z = 4 is one solution, (z - 4) is a factor of

the polYnomial in the left member of the given equation.

Dividing the polynomial in the left member by (z - 4),

we find that the given equation ean be rewritten in

the form

(z - 4)(3z2 - 8z + 4) = 0.

Factoring again, we have

(z - 4)(3z - 2)(z - 2) = 0.

The solutions of the equation are 4,

2, 1 + 1, 1 -

-1 2----tea, 1-22 2-4(31 .

4, 1, -1 +4/21, -1

(z 1)(z + 21) or z2 + (2i - 1)z - 21.

The polynomial is of degree 2.

(b) In order for the polynomial to have real coefficients

it must have the conjugate of -21 as a zero beaause

it has -21 as a zero. Hence, the polynomial must be

of degree 3; the required polynomial is

(z - 1)(z + 2i)(z - 2i) or z
3

- z
2
+ 4z - 4.

(c) The polynomial of lowest possible degree must contain

the square of a polynomial of degree 2 which has both

-21 and 21 for its zeros. Thus, the required poly-

nomial is of degree 5; it is

(z-1)((z+21)(z-2032 or z5 z4 + 8z3 8z2+ 16z - 16.

9 Since 3 +4/2i is a solution of the equation, so is 3 -i/n.
Thus,

([z (3 +4/ffi)][z - (3 -,s/ffi)]) = (z 2 - 6z + 11)

is a factor of the polynomial in the left member of the given

equation. By long division it ean be found that the other

factor is (z
2

- 9). Hence, the solutions of the equation are

3 +4/1, 3 -4/21, 3, -3.
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10. 1 - 1 + V5i3 v#7) w/E.

11. (a) (z - r2)(z r3)

z3 + [(-r1)+(-r2)+(-r3)1z2+[(-r1)(-r2)+(-r1)(-r3)+(-r2)(-r3)1z

+[(-r1)(-r2)(-113)3

z
3

- (r1 + r2 + r3)z2 + (r1r2 + r1r3 + r2r3)z - (r1r2r3).

(b) (z.- r/)(z r2)(z r3)(z

4
- k

/ %
(r rz rl+r2+r3+1 3r4,z + r 2+ 1r3+r1r4+r2rer2r4+r3r4jz

2

(r1r2r3 + r1r2r4 + r1r3r4 + r2r3r4)z + (r/r2r3r4).

(c) (z r1)(z - r2)...(z r7)

= z7 - (r1+ r2+ ...+ r7)z6+ (r1r2+ r1r3+ ...+r6r7)z5

- (r1r2r3 + r1r2r4 + + r5r6r7 +

+ (-1)7(r1r2 r7).

10. Answers to Miscellaneous Exercises.

1. -(2 - 31) = -2 + 31

(2 - 31) = 2 + 31

12 - 311 =V4 + 9 =4iT 7

17=7T! = 12 - 311 =/17-

=

2 + 31 2
17

2 - 31
3112

(,/.7)2
13

13
3

+

1(2 - 31)21 = 12 - 3112 - 13

. (4 + 5i)T7-21-yr (4 + 51)(121 +

22+ ni.
2. tz (c + di)][z - (c - di)] = 0

2
z - ((c + di) + (c - di)1z + (c + di)(c - di) = 0

z
2

- 2cz + (c
2
+ d

2
) = 0.
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3. It is closed with respect to multiplication, but not with

respect to addition bince 1 + 1 is not in the set.

4. y2 2; 0

2 2 2
x + y 2; x

y2 v47

Ix + 141 Ix! 2: x

Izi 2, x

5. (a) Circle of radius 3 with center at (2,0).

(b) Set of points exterior to circle of radius 3 with

center at (-2,0).

(c) Set of points interior to circle of radius 4 with

center at (0,2).

(d) Set of points interior to, or on, circle of radius 5

with center at zo.

6. Ix + yi - (2 + 31)1 = 5

1(x - 2) + (y - 3)il = 5

Akx 2)2 + (Y 3)2 zs 5

2)2 (y 3)2

x2 + y2 - kx - 6y - 12 0.

The set of points satisfying the given equation is the circle

of radius 5 with center at (2,3).

7. (a) The distance from the origin of z/ is less than that

of z
2.

(b) z is on the circle of radius 5 with center at the

origin.

(c) z
1

and z
2

are symmetric with respect to the origin.

(d) z1 and z2 are symmetric with respect to the y-axis.

(e) z
1

and z
2

are symmetric with respect to the x-axis.



8. If z x + yi the stated conditions become

442

The solutions of this pair of equations are x

y = and x = y . The solutions of the
41ff NAE v4.7

problem are therefore z = + -

9. If the coefficients are real and 3 + 21 is a solution, then

3 - 21 must also be a solution. If the equation is quadratic,

it can have no more than these two solutions. Thus, the

equation must be

a[z - (3 + 2i)][z - (3 - 21)] = 0

or

az
2 - 6ax + 13a = 0

where a / 0 is any real number.

10. We show generally that if z = x + yi is any complex number

(not zero) the quadrilateral with vertices z, iz, i2z, 13z

is a square. The midpoints of the diagonals of this quad-

rilateral are

z + i2z z - z7-- = = 0

iz + i3z iz - iz
= = 0

so that the diagonals bisect each other at the origin. Thus,

the quadrilateral is a parallelogram. The slope of the seg-

ment joining the origin to z = x + yi is the slope of

the segment joining the origin to iz = i(x + yi) = -y + xi

is ---. Since these slopes are negative reciprocals, the

diagonals are perpendicular. Thus, the parallelogram is a

rhombus. Finally, each diagonal is equal to 21zI and

hence, the rhombus, having equal diagonals, is a square.

11. If z
o

is a solution, then
"i .0

is also a solution, since

the coefficients are real. By the Fundamental Theorem

az
2 + bz + c = a(z - z )(z

o
)

a[z2 (z + 20)z + z ]o o

= az
2

- a(z + 7 )z + az .0 0



Equating coefficients we obtalm

b -e(a + ), c az 7
o

z
o

+ = z . .

a o o a

The curve z + . is the straight line x = -
c 2 cThe curve zz = is the circle x

2
+ y Since za a'

lies on both curves it is one of the points of intersection

of these two curves (the other is ). Thus, to construct

the roots of the quadratic equation az
2
+ bz + c = 0

(b2 4ac < 0) draw a circle of radiusitE about the origina
and draw the straight line parallel to the y-axis throuel

(- 0). The solutions of the equation are the points of

intersection of these curves.

a real, a / 0.

13. If z = x + yi then z
2

x
2

- y
2
+ 2xyi so that the real

part of z
2

is 0 if and only if x2 - y
2

. 0. Since

x
2

- y
2

= (x + y)(x y)0 x
2

- y
2
= 0 if and only if

x + y 0 or x y = 0. Thus, the set of points satisfying

the given condition is the set of points on the lines of

or

slope 1 and -1 through the orig
7

We have (i.)2 =
2 72

=

izi izi

zero, then the real part of z
2

in.

. If the real part of z
2

is

is zero, since z2 and

2 7z =z are conjugates. Since (--)
2 1--- 2zrz, and

Izi1 1 2--Tr is real, it follows that the real part of k) is zero.
z

14. The discriminant of the equation is

(1 + r)2 - 4 2 r = r2 - 6r + 1.

The equation has only one real root when the discriminant is

0; that is, when r is one of the zeros--3 ,/7, 3 +

of the discriminant. The equation has complex roots when

the discriminant is negative. For very large values of r

the discriminant is positive, so that it will be negative if

and only if r is between its zeros--3 < r < 3 +



15. If a i 1, b i, then a + bi 1 + 2. 0; Mr-Z7...0;
a - bi - 2. Thus, 73717N7 p( a - bi in this case.

16. The set of points equidistant from zi and z2 is the set of

points z which satisfy the equation

lz zil = 1z z21.

Squaring this equation we have

lz z112 lz - z212

from which we get

(z z
1
)11E--77-T (z z )77.77-71 2 2

(z - z
1

- 7 ) (z z
2
)(1- - )

1-1z + + z11.1 . - - z27i- + z21-2

(71 - i-2)z + (z1 - z212" z11-1 - z2z2.

The last equation is the equation of the perpendicular

bisector of the segment.

17. The point z belongs to the set if and only if

lz - 1 < 1z - z 01; that is, if and only if the distance

from z to z
o

is less than the distance from z to z
0.

This will be true if and only if the point z lies on the

same side as z
o

of the perpendicular bisector of the

segment joining zo and zo. This perpendicular bisector

is the x-axis. Thus, the set is the set of all points z

which lie on the same side of the x-axis as E .o° This can

also be established by calculation.

18. Let zi - a + bi and z2 c + di where a, b, c and d

are real.

(1) a + bi c - di ac + bd be - ad
z
2

77= a - di ca + d
2 2

+

Hence, is real if and only if (2) be - ad = 0.
z
2

It can be shown that be - ad = 0 if and only if z, and

z
2

ary on a straight line through the origin. To establish

this we must prove two if-then statements.

(a) If zi and z2 are on a straight line through the

origin then be - ad = 0, and

(b) If be - ad = 0 then z, and z2 are on a straight

line through the origin.
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Proof of (a): If the line is the y-axis, then a gm 0 and
- 0 and we have at once b.0 - 0.d 0. If the line

is not the y-axis, then the slope of this line joining
the origin to zi is equal to the slope of the line

djoining the origin to z2, i.e.,

Hence, be = ad or bc - ad = 0.

Proof of (b): We have (2) be = ad. If zi is on the y-axis
then a 0 and by (2) be = 0. But b / 0 because
z - a + bi 1 0 by hypothesis. Hence, c = 0 and z2
is also on the y-axis. This proves that z2 is on the
y-exis if zi is and the two points are on a straight
line through the origin.

If z
1 is not on the y-axis, then a / 0. From

this we see that c / 0 because if c = 0 and a / 0
we must conclude from (2) that d = 0 and this would
mean that z2 = c + di = 0 in violation of our hypo-
thesis that z

2 is a non-zero complex number. Hence,
ac / 0 and we may divide both members of (2) by ac
to obtain

b d
a c

which is precisely the condition that z1 and z2 lie

on a straight line through the origin.

We summarize our argument
z
1

is real if and only if bc - ad = 0 and bc - ad = 0z2

if and only if zi and z2 lie Rn a straight line

through the origin. Therefore, ill is real if and only
if z and z

2 lie on a straiglit2line through the

origin.

19. z
4

= -1 or z
4
+ 1 = O.

(z2 i)(z2

Hence, z
2

= -i or z
2

= i. The solution set is evident by

the union of the solution sets of the equations solved in
Problems 22 and 23 of Exercise 6, namely,

1 1 1 1
s + --- and ---
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20. It will be sufficient to show that the law of trichotomy is

inconsistent with 0
4

for the element i. Certainly, i 0.

Then either i > 0 or i < 0. In either ease, by 04 we

have 1
2 > 0 and we are confronted by the contradiction

-1 > 0.

21. If x and y are real, it is evident that the conjugate of

x + yi is x - yi. Moreover, it can be shown that if

x + yi = x yi, then x and y are real. Let x . a + bi

and y c + di where a, b, c and d are real.

x + yi = (a d) + (b + d)i

x.+ yl (a d) - (b + c)i

x - yi = (a + d) + (b c)i

Since x + y - yi we have

(a d) (b + c)1 = (a + d) + (b c)i

According to Theorem 5-4

a -d=a+ d
and

-(b + c) b - c.

From these equations we conclude that d 0 and b 0.

x = a and y = c where a and c are real.

Hence, 7-7-1f- x yi if and only if x and y are real.

22. The proposition stated is true provided x and y are real.

In this event we have

Ix' + lyi if and only if

(Ix1 + 11,1)2 S, 2Iz12.

12 2
Now, izi x

2
+ y and we have

1x12 21x1 tyl
iy12 21x12 2ly12.

This reduces to 0 1)(1 2 21x11Y1 + IY12 or

0 (lxi 2 which is

true because the square of any real number is

non-negative. Q.E.D.

The proposition is not true for all complex values of x

and y as the following counter-example will show.
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Let x = 8 + 2i and y = -1 + 4i

then Ixl =1/68 = 4/17 and 1Y1 a' 47-

Ix1 IYI 4/r7

z = x + iy = (8 + 21) + i(-1 + 4i) . 4 + i.

Izi .47. It is false that Airr
hence, in this case lxi + IA is not equal to
or less than

11. Construction 611 the Complex Number System.

Section 11 outlines Gauss's construction of the complex
number system. As a source of historical information we suggest
The aulument of Mathematics, by E.T. Bell (McGraw-Hill, 1945,
Second Edition): Wessell and Argand, p.177; Gauss, p.179;
Cauchy, p.194.

12. Sample Test zts.1.4.c.1 for chuter .2. (Answers on Page 55)

Note: In the questions included in this sBction a, b, c, d,
x, y are real numbers and z is a complex number.

Part I: True-False.

Directions: If a statement Is true, mark it T; if the statement
io false, mark it F.

1. The imaginary part of a + bi is bi.

2. The discriminant of the equation x
2
+ 2 = 0 is 8.

3. Every complex number has an additive inverse.

4. A one-to-one correspondence can be established between

points of the xy-plane and the elements of C.

The product of a complex number and its conjugate is a
complex number.

6. The sum of a complex number and its conjugate is a pure
imaginary number.
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7. If the coefficients of a quadratic equation are real numbers,

then the roots of the equation are real numbers.

8. iz] is a non-negative real number.

. 9. The sum of' z and -7 is a real number.

10. If z is a complex number, z and 7 correspond to points

in the xy-plane which are symmetric with respect to the

y-axis.

11. The multiplicative inverse of (x yi) is 242:-.Y4 .
x + y

12. If (a + bi)(x + yi) = 1, then ax - by = 1.

13. z1 + z2 = - 72.

14. (a + bi)(a + = a
2

+ b
2

.

15. If Izi = 1, then z is its own multiplicative inverse.

16. The set of numbers (1, -1, i, -.I.) is closed under mul-

tiplication.

17. 1z + lz21 < lz1 + z21.

18. The reflection of 7 in the y-axis is -z.

Part II: Multiple Choice.

Directions: Select the response which best completes the state-

ment or answers the question.

19. Which one of the following equations does not have a solu-

tion in the real number system?

(a) x + 5 . 5

(b) (x + 5)2 - 9

(c) x2 + 5 = 0

(d) x
2 - 5 . 0

20. What ordered pair of real numbers (x,y) satisfies the

equation x - 4yi = 20i ?

(a) (20,0)

(b) (03-5)

(c) (0,20)

(d) (0,5)

(e) (0,0)



21. If z = (5 - 6i) -

(a) 2 - (10)i

(b) 2 + (2)1

(c) 2 + (-10)i

41), then the standard form of z is

(d) 2 + (-2)1

(e) 2 + (10)1

22. The additive inverse of c - di is

(a) -c + di

(b) 6-417
(c) c + di

(d) 1

(e) 0

23. If the complex number 5 + 51 is represented by the point P

in an Argand diagram, then the slope of the line segment
joining P and the origin is

(a) (d) 1 )

24. Which one of the following expressions does not represent a
real number?

(a) i2 + i/f (d) 6 + 2i

(b) 3i4 (e) (21)6

(c) 44-3)2

25. The multiplicative inverse of 1 is

(a) i (b) (c) 1 (d) -1 (e)

26. Which one of the following equations has non-real solutions?

(a) x 4 .

(b) 4x2 - 3x + 6 0

(c) 6x2 + 5x - 8 . 0

(d) 2x2 - 14x + 3 - 0

(e) x2 =.117

27. The conjugate of -4 written in standard form is

(d) -4 + Oi

(e) None of these
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28. Which one of the following is not equivalent to each of the

other four?

(a) 4577 (d) i4(202

(b) 4/777 (e) v47

(c)

29. The product of (2 + 31)

(a) 19 + 91

(b) 19 + 211

(c) 1 + 91

and (5 - 3i) is

(d) 1 - 211

(e) 10 - 91

30. When written in standard form the real part of (2 - 1)2 is

(a) 1 (b) -1 (c) 5 (d) -3 (e) 3

31. Given z = -3i, then 7 in standard form is

(a) 31 (b) 0 + 3i (c) 1311 (d) 0 + (-3)1 (e) -31

32. The smallest set which contains the absolute value of every

complex number is the set of

(a) natural numbers (d) rational numbers

(b) integers (e) complex numbers

(c) real numbers

33. The additive inverse of i is

(a) 1 (b) -1 (c) (d) (e) 0

34. Which one of the following pairs of complex numbers can be

represented by points which are symmetric with respect to

the origin in an Argand diagram?

(a) 3 + 210 3 - 21 (d) 3 + 2i, -3 + 2i

(b) 3 + 21, 2 + 31 (e) 3 + 21, -2 - 31

(c) 3 + 211 -3 - 2i

35. In an Argand diagram the set of points defined by the

equation 1z12

(a) a point (d) a circle

(b) a straight line (e) two parallel lines

(c) two perpendicular lines
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36. If z is a complex number such that 4:- . -1 and z7 =

then z is

(a) i (d) 1 or -1

(b) (e) i or -i or -1.

(c) i or -i

37, Which of the following ordered pairs of real numbers (x,y)

satisfies the equation 3x + 5yi - 8 = 5x - yi + 612 ?

(a) (-4,1) (d) (4,1)

(b) (-1,0) (e) (-4,-4)

(c) (00-1).

38. Which of the following equations has the solutions 2 -

and 31 ?

(a) z2 - 4z + 5 . 0

(b) z2 - (2 + 41)z + (3 + 6i) . 0

(c) z2 - (2 + 2i)z + (3 + 6i),. 0

(d) z2 (2 + 21)z + (-3 + 6i) = 0

(e) z2 - (2 - 2i)z + (6 - 31) = 0

39. The equation z3 - 2z2 + z - 2 = 0 has i as one of its

solutions. The other solutions of the equation are

(a) -1,2 (b) -i,-2 (c) -1,1 (d) -1,2 (e) 0,-i

40. Which one of the following complex numbers is the reflection

of 2 - 3i in the y-axis?

(a) -2 - 31

(b) -2 + 3i

(c) 2 + 31

41. The solution set of the equation z2 + a4 where a is

a real number, is

(412, ..a.2.)

(b) (a, -a, ai, -ai)

(c) (a, -a,

42. The length of the line segment which joins the points

representing 3 + 4i and -4 + 5i is

(a) v7f (b) pjf ( ) 5/7 (a) i (e) 50

(d) -3 - 21

(e) 3 - 21

(d) (a2 -a
2
i)

(e) (-a a
2
is -a

2
1)
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Part III: Matching.

Directions: In questions 43-49 choose the'point on the Argand

diagram which represents the given number. Write

the letter which identifies the point of your choice

on an answer sheet. Any choice may be used once,

several times, or not at all.

43. 2 - 3i

44. 3 - Oi

45. 72 --I-7- T.

46. 13 + 4i1

47. (2 + 3i) + (1 - i)

48. (3 + 21) - (5 + 51)

49. z such that
1

Part IV: Problems.

1
= 2

1111111.1111111011WIM

IIIWIRIE
.1111111111111.11111RQ

0 1

T--4----,

M 4 1

+

4-1 -f--
________

1 - i3
50. Express the quotient

+ in standard form.
3 I

51. If z . 4 + 21 - 6
, find the standard form of z.

52. Find the ordered pair of real numbers (x,y) that satisfies

the equation x 151 = 5yi.

53. Find the real values of x and y which satisfy the

equation x y + (x + y)i = 2 + 6i.

54. Solve the equation (x + yi)(2 + i) + 3x - 11 - 0 for real

values of x and y.

55. For what real values of k does the equation z2 + kz + 1.0
have solutions that are not real?

56. Write a quadratic equation with real coefficients which has

5 + i as one of its roots.

57. If z
1

= -2 + i and z
2
- 1 + 41, find + z

2
in stand-

ard form and exhibit the sum graphically.

58. Describe the set of points in the plane which satisfy the

condition 1z1 = the real part of z.
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59. Solve each of the following equations and express the solu-
tions In standard form:

(a) 3z2 + z + 1 = 0

(b) z2 + z + c = 0, c is a positive integel,

(c) pz2 + q = 0, p < 0, q > 0, and p and q are real.

60. Given the following numbers: 2-AP 12 4i 3 4, vviT, 0, 7,

3c771 v17% - g/17, 07% 1,41.171 1.74, 4i-7, 3.7,

i
2

2 + Argy 2 -

(a) Classify the given numbers into two lists; real numbers
and imaginary numbers.

(b) Reclassify'the real numbers into rational and irrational
numbers.

Answers to Sample Test Questions.

Part 1: True-False.

1. F 7 F 13. F
2. T 8. T 14. T
3. T 9. F 15. F
4. T 10. F 16. T
5. T 11. F 17. F
o. F 12. T 18. T

Part II: Multiple Choice.

19. (c) 27. (d) 35. (d)
20. (b) 28. (c) 36. (c)
21. (d) 29. (a) 37. (b)
22. (a) 30. (e) 38 (c)
23. (d) 31. (b) 39. (d)
24. (d) 32. (c) 40. (a)
25. (b) 33. (d) 41. (d)
26. (b) 34 (c) 42.

(c)



Part III: Matching

43. L 47. S

44. R 48. N

45. N 49. T

46. Q

Part IV: Problems

2 1
50.

5
1

51. 5 + 2i

52. (0,-3)

53. x = 4, y = 2

54. x = 2, y = -1

55. Ikl < 2

56. z
2

- 10z + 26 - 0

57. z + z
2

= -1 + 5i

58. Non-negative part of x-axis.

1
59. (a) z

(b) z =

(c) z + 011
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60. The table shows the answers to both parts (a) and (b).

IRRATIONAL

7

2 4-- N/7

IMAGINARY

4i

57

62


